Python代写:CSC411 Digit Classification

Requirement

In this request, you will compare the characteristics and performance of different classifiers, namely logistic regression, k-nearest neighbours and naive Bayes. You will experiment with these extensions and extend the provided code. Note that you should understand the code first instead of using it as a black box.

Python versions of the code have been provided. You are free to work with whichever you wish.

Analysis

作为Machine Learning的三大基础算法

  1. Logistic regression,也就是logistic回归,常用于数据挖掘,疾病自动诊断,经济预测等领域
  2. K-nearest neighbours,也就是K邻近算法,常用于数据挖掘,以及分类,对未知事物的识别等领域
  3. Naive Bayes,也就是朴素贝叶斯,常用于分类器,文本分类识别

本题给出了以上三大算法的基本实现,但是需要根据测试框架的调度逻辑,实现未完成的测试函数。

本题偏重工程性质,在不断的调试中,会加深对算法的理解。

Tips

下面是check_grad函数的实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
def check_grad(func, X, epsilon, *args):
if len(X.shape) != 2 or X.shape[1] != 1:
raise ValueError("X must be a vector")

y, dy, = func(X, *args)[:2] # get the partial derivatives dy
dh = np.zeros((len(X), 1))

for j in xrange(len(X)):
dx = np.zeros((len(X), 1))
dx[j] += epsilon
y2 = func(X+dx, *args)[0]
dx = -dx
y1 = func(X+dx, *args)[0]
dh[j] = (y2 - y1)/(2*epsilon)

print np.hstack((dy, dh)) # print the two vectors
d = LA.norm(dh-dy)/LA.norm(dh+dy) # return norm of diff divided by norm of sum

return d